Clinical Outcomes With Migalastat in Patients With Fabry Disease Based on Degree of Renal Impairment: Results From Phase 3 Trials


Inherited Diseases, Fundación Puigvert, Unversitat Autònoma de Barcelona, Barcelona, Spain; Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Medical Genetics, University of Versailles-St. Quentin en Yvelines (UVSQ), University of Montpellier, Montpellier, France; Royal Free NHS Foundation Trust and University College London, London, UK; Hôpital du Sacré-Coeur, University of Montreal, Montreal, Quebec, Canada; Baylor Research Institute, Dallas, TX, USA; Amicus Therapeutics, Inc., Cranbury, NJ, USA

INTRODUCTION

• Fabry disease is a progressive, life-threatening disorder caused by deficiency of a glycosidase A (α-Gal A) that leads to accumulation of globotriaosylceramide (GL-3), a multiple cell types and organs, often culminating in multisystemic disease and early death.
• Migalastat, a first-in-class, orally administered small molecule, is a pharmacological chaperone approved in the European Union for Fabry disease, and in Australia, Israel, United States, and Canada for Fabry disease. Migalastat reduces GL-3 in multiple cell types and organs, often culminating in multisystemic disease and early death.

METHODS

• The FACETS (NCT00925301) was a phase 3, double-blind, randomized, placebo-controlled study designed to evaluate the efficacy, safety, and pharmacokinetics of a 12-month course of migalastat in Fabry disease in patients with Fabry disease with amenable mutations who were previously untreated with migalastat.

OBJECTIVE

• To assess clinical outcomes by degree of renal impairment at baseline in patients with Fabry disease and amenable mutations who received migalastat in the FACETS and ATTRACT studies.

RESULTS

White Blood Cell α-Gal A Activity

• In FACETS and ATTRACT, white blood cell (WBC) α-Gal A activity (mean±SE) increased with migalastat treatment regardless of baseline renal function (Figure 3A). FACETS and ATTRACT studies

Kidney Peritubular Capillary GL-3 Inclusions

• In FACETS, a reduction in PTC GL-3 inclusions was observed from baseline to Month 6 in patients who began migalastat treatment at randomization but not in patients beginning treatment at Month 6 in the ATTRACT study (Figure 4). FACETS and ATTRACT studies

CONCLUSIONS

• In both phase 3 trials, patients with Fabry disease and amenable mutations treated with migalastat had similar clinical outcomes regardless of baseline renal function.
• The small number of patients with baseline eGFRMDRD <60 mL/min/1.73 m2 at baseline should be considered when interpreting these data.

REFERENCES

1. Germain DP. Clinical outcomes with migalastat in patients with Fabry disease based on degree of renal impairment: results from phase 3 trials. Presented at the 55th ERA-EDTA Congress; May 24-27, 2018; Copenhagen, Denmark. Poster SP002

ACKNOWLEDGMENTS

The authors thank the patients, their families, and the FACETS and ATTRACT study investigators. Medical writing assistance was provided by Apac禾 (honyfa 5恢) and was supported by Amicus Therapeutics, Inc.

DISCLOSURES

Conflicts of Interest

RT has received honoraria from Amicus, Orphan, Shire Genzyme, Orphan Research, Shire, and Protalix; has served as a consultant for Shire, and has received research funding from Amicus Therapeutics, Shire Genzyme, and Shire. DAH has served as a consultant for Sanofi Genzyme and Shire. JY, JPC, NS, and JAB are employees of and hold stock in Amicus Therapeutics, Inc.